Temporal Autocorrelation
ar1_cor <- function(n, rho) {
exponent <- abs(matrix(1:n - 1, nrow = n, ncol = n, byrow = TRUE) -
(1:n - 1))
rho^exponent
}
temp_mat<-ar1_cor(n=100,rho=0.9)
colnames(temp_mat)<-rownames(temp_mat)<-1:100
ds <- data.frame(day=1:100)
sim_dat_ta<-simulate_population(
seed=25,
data_structure = ds,
parameters = list(
day = list(vcov=4),
residual = list(vcov=1)
),
cov_str = list(day=temp_mat)
)
dat_ta<-get_population_data(sim_dat_ta)
head(dat_ta)
## y day_effect residual day squid_pop
## 1 3.6334258 3.835942 -0.2025162 1 1
## 2 2.0960169 3.270739 -1.1747219 2 1
## 3 0.6243599 1.979511 -1.3551508 3 1
## 4 1.5844086 1.307931 0.2764777 4 1
## 5 1.4873109 1.145398 0.3419127 5 1
## 6 1.0725710 2.048936 -0.9763652 6 1
all(unique(ds$day) %in% rownames(temp_mat))
## [1] TRUE
sim_dat_no_ta<-simulate_population(
seed=23,
data_structure = ds,
parameters = list(
day = list(vcov=4),
residual = list(vcov=1)
)
)
dat_no_ta<-get_population_data(sim_dat_no_ta)
par(mfrow=c(2,1))
plot(y~day,dat_ta, type="l", main="Temporal Autocorrelation")
plot(y~day,dat_no_ta, type="l", main="No Autocorrelation")
