4.3 Sex specific genetic variance and inter-sexual genetic correlations
<- data.frame(animal=BTped[,"animal"],sex=sample(c("Female","Male"),nrow(BTped), replace=TRUE))
ds
<- simulate_population(
squid_data parameters = list(
sex=list(
fixed=TRUE,
names=c("female","male"),
beta=c(-0.5,0.5)
),animal= list(
names = c("G_female","G_male"),
vcov =matrix(c(0.1,-0.1,-0.1,0.4), nrow=2, ncol=2 ,byrow=TRUE)
),residual = list(
names="residual",
vcov = 0.1
)
),data_structure = ds,
pedigree = list(animal=BTped),
model = "y = female + male + I(female)*G_female + I(male)*G_male + residual"
)
<- get_population_data(squid_data)
data head(data)
## y female male G_female G_male residual animal sex
## 1 -0.6170325 0 1 0.2464809 -1.098901182 -0.018131357 R187557 Male
## 2 0.2126651 0 1 0.3753270 -0.132978126 -0.154356766 R187559 Male
## 3 -0.3887086 1 0 0.2620467 0.531475188 -0.150755220 R187568 Female
## 4 -1.0722142 1 0 -0.1760677 1.799807824 -0.396146496 R187518 Female
## 5 0.3466036 0 1 0.4672305 -0.003029647 -0.150366787 R187528 Male
## 6 -0.8563174 1 0 -0.3623897 0.317785707 0.006072329 R187945 Female
## squid_pop
## 1 1
## 2 1
## 3 1
## 4 1
## 5 1
## 6 1
par(mfrow=c(1,2))
boxplot(y~factor(sex),data)
plot(G_female~G_male,data)