squid_data <- simulate_population(
parameters = list(
animal = list(
names = c("G_int","G_slope"),
mean = c(0,0),
vcov = matrix(c(1,0.3,0.3,0.5),ncol=2,nrow=2,byrow=TRUE),
beta = c(1,0)
),
observation= list(
names = c("environment"),
vcov = c(0.2)
),
residual = list(
names = c("residual"),
vcov = c(0.5)
),
interactions=list(
names = "G_slope:environment",
beta = 1
)
),
data_structure=rbind(ped,ped,ped,ped,ped),
pedigree = list(animal=ped)
)
data <- get_population_data(squid_data)
library(lme4)
short_summary <- function(x) print(summary(x), correlation=FALSE, show.resids=FALSE, ranef.comp = c("Variance"))
short_summary(lmer(y ~ environment + (1+environment|animal),data))