4.2 Multivariate genetic effects
We can simulate genetic effects affecting multiple phenotypes and the covariance between them, by specifying the number of response variables, and a covariance matrix, instead of only a variance.
<- simulate_population(
squid_data data_structure = BTped,
pedigree = list(animal = BTped),
n_response=2,
parameters = list(
animal = list(
vcov = diag(2)
),residual = list(
vcov = diag(2)
)
)
)
<- get_population_data(squid_data)
data head(data)
## y1 y2 animal_effect1 animal_effect2 residual1
## R187557 -0.8385548 0.1841058 0.6786441 -0.3935136 -1.5171990
## R187559 -0.4701207 1.0400757 -1.4113157 1.0666325 0.9411949
## R187568 -0.1846425 0.3584195 1.0712568 0.3008260 -1.2558993
## R187518 -0.9746306 1.1945939 -2.3299460 0.7226137 1.3553154
## R187528 -0.8318896 0.2290793 0.3754430 0.3256557 -1.2073326
## R187945 1.8103155 -1.2127095 2.1203028 -1.2159118 -0.3099873
## residual2 animal dam sire squid_pop
## R187557 0.577619380 R187557 <NA> <NA> 1
## R187559 -0.026556865 R187559 <NA> <NA> 1
## R187568 0.057593543 R187568 <NA> <NA> 1
## R187518 0.471980260 R187518 <NA> <NA> 1
## R187528 -0.096576413 R187528 <NA> <NA> 1
## R187945 0.003202301 R187945 <NA> <NA> 1
# Ainv<-inverseA(BTped)$Ainv
# mod <- MCMCglmm(cbind(y1,y2)~1,random=~us(trait):animal, rcov=~us(trait):units,data=data,family=rep("gaussian",2),verbose=FALSE,ginverse=list(animal=Ainv))
# summary(mod)