4.3 Sex specific genetic variance and inter-sexual genetic correlations
<- data.frame(animal=BTped[,"animal"],sex=sample(c("Female","Male"),nrow(BTped), replace=TRUE))
ds
<- simulate_population(
squid_data parameters = list(
sex=list(
fixed=TRUE,
names=c("Female","Male"),
beta=c(-0.5,0.5)
),animal= list(
names = c("G_female","G_male"),
vcov =matrix(c(0.1,-0.1,-0.1,0.4), nrow=2, ncol=2 ,byrow=TRUE)
),residual = list(
names="residual",
vcov = 0.1
)
),data_structure = ds,
pedigree = list(animal=BTped),
model = "y = Female + Male + I(Female)*G_female + I(Male)*G_male + residual"
)
<- get_population_data(squid_data)
data head(data)
## y Female Male G_female G_male residual animal sex
## 1 -0.2529123 1 0 -0.03100451 -0.04841182 0.27809218 R187557 Female
## 2 -0.3205604 0 1 -0.33966106 -0.66849369 -0.15206674 R187559 Male
## 3 0.1583027 0 1 0.23986200 -0.26773808 -0.07395921 R187568 Male
## 4 0.9643963 0 1 -0.10503600 0.41074154 0.05365477 R187518 Male
## 5 0.5121345 0 1 0.31946969 -0.11387147 0.12600596 R187528 Male
## 6 1.2310101 0 1 0.11330433 0.47106512 0.25994496 R187945 Male
## squid_pop
## 1 1
## 2 1
## 3 1
## 4 1
## 5 1
## 6 1
par(mfrow=c(1,2))
boxplot(y~factor(sex),data)
plot(G_female~G_male,data)