4.3 Sex specific genetic variance and inter-sexual genetic correlations
<- data.frame(animal=BTped[,"animal"],sex=sample(c("Female","Male"),nrow(BTped), replace=TRUE))
ds
<- simulate_population(
squid_data parameters = list(
sex=list(
fixed=TRUE,
names=c("Female","Male"),
beta=c(-0.5,0.5)
),animal= list(
names = c("G_female","G_male"),
vcov =matrix(c(0.1,-0.1,-0.1,0.4), nrow=2, ncol=2 ,byrow=TRUE)
),residual = list(
names="residual",
vcov = 0.1
)
),data_structure = ds,
pedigree = list(animal=BTped),
model = "y = Female + Male + I(Female)*G_female + I(Male)*G_male + residual"
)
<- get_population_data(squid_data)
data head(data)
## y Female Male G_female G_male residual animal sex
## 1 0.2055466 0 1 0.47080769 -0.73545126 0.44099788 R187557 Male
## 2 0.4324628 0 1 -0.62078654 -0.01386573 -0.05367147 R187559 Male
## 3 -0.5981933 1 0 -0.14154068 0.15570322 0.04334741 R187568 Female
## 4 -0.8820294 1 0 -0.09385028 -0.33749998 -0.28817915 R187518 Female
## 5 -0.5110713 0 1 0.31509524 -0.70944997 -0.30162129 R187528 Male
## 6 -0.1480012 1 0 0.07452335 0.34664838 0.27747548 R187945 Female
## squid_pop
## 1 1
## 2 1
## 3 1
## 4 1
## 5 1
## 6 1
par(mfrow=c(1,2))
boxplot(y~factor(sex),data)
plot(G_female~G_male,data)