2.4 Random Regression
Random regression (or a random intercepts and slopes model) essentially represents an interaction (or product) between predictors at different levels, with the random slopes being an unobserved, latent variable (\(u_2\)).
\[ y_{ij} = \beta_0 + \beta_1x_{i} + u_{1j} + u_{2j}x_{i} + \epsilon_{ij} \] \[ x_i \sim \mathcal{N}(0,\sigma^2_{x}) \] \[ \boldsymbol{u}_i \sim \mathcal{N}(0, \Sigma_u) \] \[ \epsilon \sim \mathcal{N}(0,\sigma^2_\epsilon) \]
We can specify random slopes by simulating a slope variable at the individual level (ind_slope
- \(u_{2}\)). We can specify the mean environmental effect the slope of the environmental variable (\(beta_1\)). \(u_{2}\) then represents the deviations from the mean slope (this is typically how it is modelled in a linear mixed effect model).
Importantly the beta
parameter associated with ind_slope
is specified as 0 (there is no ‘main effect’ of the slopes, just the interaction), and the beta
parameter associated with interaction is 1.
<- simulate_population(
squid_data data_structure=make_structure("individual(300)",repeat_obs=10),
parameters = list(
individual = list(
names = c("ind_int","ind_slope"),
beta = c(1,0),
vcov = c(1,0.5)
),observation= list(
names = c("environment"),
beta = c(0.2)
), residual = list(
vcov = c(0.5)
),interactions = list(
names = c("ind_slope:environment"),
beta = c(1)
)
)
)
<- get_population_data(squid_data)
data
short_summary(lmer(y ~ environment + (1+environment|individual),data))
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ environment + (1 + environment | individual)
## Data: data
##
## REML criterion at convergence: 8075.9
##
## Random effects:
## Groups Name Variance Cov
## individual (Intercept) 0.9964
## environment 0.5520 0.04
## Residual 0.5060
## Number of obs: 3000, groups: individual, 300
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.06715 0.05922 -1.134
## environment 0.24393 0.04546 5.366
We can make the link between the code and the equation more explicit, by expanding out the equation:
\[ y_{ij} = \beta_0 + \beta_xx_{i} + \boldsymbol{u}_j \boldsymbol{\beta}_u + \beta_{ux}u_{2j}x_{i} + \epsilon_{ij} \]
\[ \color{CornflowerBlue}{\boldsymbol{\beta_u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}} , \color{orange}{\beta_{ux}=1} \]
Here we have specified no correlation between intercepts and slopes. To simulate a covariance/correlation between intercepts and slopes, we can simply give the vcov
argument a covariance matrix, instead of two variances:
<- simulate_population(
squid_data data_structure=make_structure("individual(300)",repeat_obs=10),
parameters = list(
individual = list(
names = c("ind_int","ind_slope"),
beta = c(1,0),
vcov = matrix(c(1,0.3,0.3,0.5),ncol=2,nrow=2,byrow=TRUE)
),observation= list(
names = c("environment"),
beta = c(0.2)
), residual = list(
vcov = c(0.5)
),interactions = list(
names = c("ind_slope:environment"),
beta = c(1)
)
)
)
<- get_population_data(squid_data)
data
short_summary(lmer(y ~ environment + (1+environment|individual),data))
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ environment + (1 + environment | individual)
## Data: data
##
## REML criterion at convergence: 8122.5
##
## Random effects:
## Groups Name Variance Cov
## individual (Intercept) 1.1279
## environment 0.4933 0.33
## Residual 0.5244
## Number of obs: 3000, groups: individual, 300
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.009427 0.062869 0.150
## environment 0.266923 0.043233 6.174